Directional recurrence for infinite measure preserving actions
نویسندگان
چکیده
منابع مشابه
DIRECTIONAL RECURRENCE FOR INFINITE MEASURE PRESERVING Zd ACTIONS
We define directional recurrence for infinite measure preserving Z actions both intrinsically and via the unit suspension flow and prove that the two definitions are equivalent. We study the structure of the set of recurrent directions and show it is always a Gδ set. We construct an example of a recurrent action with no recurrent directions, answering a question posed in a 2007 paper of Daniel ...
متن کاملMultiple and Polynomial Recurrence for Abelian Actions in Infinite Measure
We apply the (C, F )-construction from [Da] to produce a number of funny rank one infinite measure preserving actions of Abelian groups G with “unusual” multiple recurrence properties. In particular, we construct the following for each p ∈ N ∪ {∞}: (i) a p-recurrent action T = (Tg)g∈G such that (if p 6=∞) no one transformation Tg is (p + 1)-recurrent for every element g of infinite order, (ii) ...
متن کاملExtensions and Multiple Recurrence of infinite measure preserving systems
We prove that an extension of an invertible, multiply-recurrent infinite measure preserving transformation is also multiply-recurrent.
متن کاملPoisson-Pinsker factor and infinite measure preserving group actions
We solve the question of the existence of a Poisson-Pinsker factor for conservative ergodic infinite measure preserving action of a countable amenable group by proving the following dichotomy: either it has totally positive Poisson entropy (and is of zero type), or it possesses a Poisson-Pinsker factor. If G is abelian and the entropy positive, the spectrum is absolutely continuous (Lebesgue co...
متن کاملQuasi-factors for Infinite-measure Preserving Transformations
This paper is a study of Glasner’s definition of quasi-factors in the setting of infinite-measure preserving system. The existence of a system with zero Krengel entropy and a quasi-factor with positive entropy is obtained. On the other hand, relative zero-entropy for conservative systems implies relative zero-entropy of any quasi-factor with respect to its natural projection onto the factor. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ergodic Theory and Dynamical Systems
سال: 2014
ISSN: 0143-3857,1469-4417
DOI: 10.1017/etds.2014.17